Exercise 20

Show that $\mathbf{l}_{1}(t)=(1,2,3)+t(1,0,-2)$ and $\mathbf{l}_{2}(t)=(2,2,1)+t(-2,0,4)$ parametrize the same line.

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector, b is the position vector for a point on the line, and t is a parameter. \mathbf{l}_{1} is parallel with \mathbf{l}_{2} because its direction vector is a constant multiple of that for \mathbf{l}_{2} : $-2(1,0,-2)=(-2,0,4)$. Since $\mathbf{l}_{1}(-1)=\mathbf{l}_{2}(1)=(0,2,5)$, the two lines travel through the same point. $\mathbf{l}_{1}(t)$ and $\mathbf{l}_{2}(t)$ are therefore just two different ways of parameterizing the same line.

